Chapter 19 – Chemical Thermodynamics

• Thermochemistry Review

- Enthalpy, $\Delta H = q_p$
 - -- for a chemical reaction, $\Delta H_{rxn}^o = \sum n\Delta H_{f_products}^o m\Delta H_{f_reactants}^o$
- Hess's Law: for a set of reactants going to a set of products the enthalpy of the reaction is constant
 - -- this is true regardless of whether the reaction takes place in a single step or multiple steps
 - -- this is where you add up the chemical equations and their corresponding enthalpies to obtain the enthalpy of reaction

Ex: Calculate $\Delta H_f^o(HNO_{3(aq)})$ given the following information:

$$\Delta H_{f}^{o}(NH_{3(g)}) = -46.1 \, kJ \, / \, mol, \ \Delta H_{f}^{o}(H_{2}O_{(l)}) = -285.5 \, kJ \, / \, mol$$

$$3NO_{2(g)} + H_{2}O_{(l)} \rightarrow 2HNO_{3(aq)} + NO_{(g)} \qquad \Delta H^{o} = -138.4 \, kJ$$

$$2NO_{(g)} + O_{2(g)} \rightarrow NO_{2(g)} \qquad \Delta H^{o} = -114.0 \, kJ$$

$$4NH_{3(g)} + 5O_{2(g)} \rightarrow 4NO_{(g)} + 6H_{2}O_{(l)} \qquad \Delta H^{o} = -1169.6 \, kJ$$

$$2(3NO_{2(g)} + H_{2}O_{(l)} \rightarrow 2HNO_{3(aq)} + NO_{(g)}) \qquad \Delta H^{o} = 2(-138.4 \, kJ) = -276.8 \, kJ$$

$$3(2NO_{(g)} + O_{2(g)} \rightarrow 2NO_{2(g)}) \qquad \Delta H^{o} = 3(-114.0 \, kJ) = -342.0 \, kJ$$

$$6NO_{2(g)} + 2H_{2}O_{(l)} + 46NO_{(g)} + 3O_{2(g)} \rightarrow 4HNO_{3(aq)} + 2NO_{(g)} + 6NO_{2(g)} \qquad \Delta H^{o} = -618.8 \, kJ$$

$$4NO_{(g)} + 2H_{2}O_{(l)} + 3O_{2(g)} \rightarrow 4HNO_{3(aq)} \qquad \Delta H^{o} = -618.8 \, kJ$$

$$4NH_{3(g)} + 5O_{2(g)} \rightarrow 4NO_{(g)} + 6H_{2}O_{(l)} \qquad \Delta H^{o} = -1169.6 \, kJ$$

$$4NO_{(g)} + 2H_{2}O_{(l)} + 3O_{2(g)} + 4NH_{3(g)} + 5O_{2(g)} \rightarrow 4HNO_{3(aq)} + 4NO_{(g)} + 46H_{2}O_{(l)} \qquad \Delta H^{o} = -1788.4 \, kJ$$

$$\Delta H_{rm}^{o} = 4\Delta H_{f}^{o}(HNO_{3(aq)}) + 4\Delta H_{f}^{o}(H_{2}O_{(l)}) - [4\Delta H_{f}^{o}(NH_{3(g)}) + 5\Delta H_{f}^{o}(O_{2(g)})]$$

$$-1788.4 \, kJ = 4\Delta H_{f}^{o}(HNO_{3(aq)}) + 4(-285.5 \, kJ) - 4(-46.1 \, kJ) - 8(0.0 \, kJ)$$

$$\Delta H_{f}^{o}(HNO_{3(aq)}) = -207.7 \, kJ$$

• 19.1 Spontaneous Processes

- spontaneous vs. nonspontaneous process
 - -- spontaneous: occurs without outside intervention like heat
 - -- nonspontaneous: requires outside intervention like heat
- experimental conditions may impact spontaneity (T & P)
 - -- for example ice will spontaneously form at 0°C or below (see Figure 19.3)

• 19.2 Entropy & the Second Law of Thermodynamics

- entropy
 - -- defn: system disorder, randomness, motion
 - -- e.g. a messy room has more entropy than a neat one
 - -- takes energy to keep maintain a neat room
- entropy changes in the surroundings occurs as a consequence of heat flow
- if a process occurs at lower temperatures than impact of heat flow is greater

- ∆S_{surr}
 - -- the sign is dependent on the direction of our heat flow
 - -- the magnitude is dependent on T
- the dependency of ΔS_{surr} on T is

$$\Delta S_{surr} = -\frac{\Delta H}{T}$$

- -- if the reaction is exothermic then $\Delta H < 0$ and $\Delta S_{surr} > 0$ which makes sense since heat is flowing into the surroundings from the system
- -- the opposite is true for an endothermic reaction
- second law of thermodynamics: a process is spontaneous if

$$\Delta S_{univ} = \Delta S_{sys} + \Delta S_{surr} > 0$$

-- when the number of moles of gas are increased from the reactants to products the system is spontaneous

$$C_3H_{8(g)} + 5O_{2(g)} \rightarrow 3CO_{2(g)} + 4H_2O_{(g)}$$
 we go from 6 to 7 gas moles

-- the opposite is also true if we reduce the number of gas moles we loose disorder, $\Delta S_{univ} < 0$

• 19.3 The Molecular Interpretation of Entropy & the Third Law of Thermodynamics

- we are skipping the molecular interpretation of thermos
- third law of thermodynamics: the entropy of a perfect crystal at absolute 0 is 0

• 19.4 Entropy Changes in Chemical Reactions

-- standard molar entropy: entropy of a substance at 1 bar of pressure (1 bar = 0.9872 atm) and 298K

--
$$\Delta S_{\text{rxn}}^o = \sum n S_{\text{products}}^o - \sum m S_{\text{reactants}}^o$$

- -- very similar to $\Delta H_{\rm rxn}^o$
- -- Ex: Compute the $\Delta S_{\rm rxn}^o$ for ${\rm C_3H_{8(g)}}$ + ${\rm 5O_{2(g)}}$ ightarrow 3CO_{2(g)} + 4H₂O_(g) using the data in Appendix C

S^o (J/mol K)
269.9
205.0
213.6
188.7

$$\Delta S_{\text{rxn}}^o = 3(213.6) + 4(188.7) - [269.9 + 5(205.0)] = 100.7 J / K$$

• 19.5 Gibbs Free Energy & 19.6 Free Energy and Temperature

- two driving forces which make chemical rxns happen:
 - -- formation of low-energy products from high-energy reactants, $\Delta H < 0$
 - -- formation of high-entropy products from low-entropy reactants, $\Delta S > 0$
- not practical to measure disorder or entropy directly
- free energy
 - -- called the Gibb's "free energy" because it is the maximum amount of energy available to do work
 - --- anymore E than this will have to be put into the system
 - $--\Delta G = \Delta H T\Delta S$
 - -- exergonic ($\Delta G < 0$, spontaneous)
 - -- endergonic ($\Delta G > 0$, nonspontaneous)

Spontaneity	ΔG	ΔS	ΔH
always spontaneous	always <0	>0	<0
spontaneous at low T	<0 at low T	<0	<0
spontaneous at high T	<0 at high T	>0	>0
nonspontaneous	always >0	<0	>0

- Ex: The standard enthalpy and entropy changes for the combustion of methane are -801 kJ and -5 J/K, respectively Is the reaction spontaneous under standard conditions?

$$\Delta G$$
 = -801 kJ - 298K * (-5 J/K x 1kJ/1000J) = -803 kJ

yes it is spontaneous and it is also exergonic

- when ΔG = 0 then the reaction is in chemical equilibrium we will discuss this later
- -- just like $\Delta H_{\rm f}^o$, $\Delta G_{\rm f}^o$ is also zero for elements in their natural states, e.g. O₂

--
$$\Delta G_{\rm rxn}^o = \sum n G_{\rm f, \, products}^o - \sum m G_{\rm f, \, reactants}^o$$

-- Ex: Is the reaction below exothermic or endothermic? Is the reaction spontaneous at all temperature? Determine the Gibb's free energy from $\Delta G^o_{\rm rxn}$ and from ΔH - $T\Delta S$ at STP

$$N_{2(g)} + 3H_{2(g)} \rightarrow 2NH_{3(g)}$$

Compound	$\Delta H_{ m f}^o$ (kJ/mol)	S° (J/mol*K)	$\Delta G_{ m f}^o$ (kJ/mol)
$N_{2(g)}$	0.0	191.5	0.0
$H_{2(g)}$	0.0	130.6	0.0
$NH_{3(g)}$	-46.1	192.3	-16.5

$$\Delta H_{\text{rxn}}^o = 2(-46.1) - [0.0 + 3*0.0] = -92.2kJ$$

therefore it's exothermic

$$\Delta S_{\text{rxn}}^o = 2(192.3) - [191.5 + 3(130.6)] = -198.7 J / K$$

therefore at STP the reaction is spontaneous

$$\Delta G_{\text{rxn}}^o = 2(-16.5) - [0.0 + 3(0.0)] = -33kJ$$

Alternatively, we can use $\Delta G = \Delta H - T\Delta S$

$$\Delta G_{\rm rxn}^o = \Delta H_{\rm rxn}^o - T \Delta S_{\rm rxn}^o = -92.2kJ / mol - 298K(-198.7J / mol \cdot K) \times \frac{1kJ}{1000J} = -32.99kJ / mol \cdot K \times \frac{1kJ}{1000J} = -32.99kJ / m$$

Since both ΔH & ΔS < 0 the reaction will be spontaneous only at low temperatures

• 19.7 Free Energy & the Equilibrium Constant

- it turns out the relationship btwn P and ΔG is based on the law of mass action:

$$\Delta G = \Delta G^{\circ} + RT \ln Q$$

- Ex: Using the data below calculate ΔG for the reaction at 25°C.

	$NO_{(g)} + O_{3(g)} \to NO_{2(g)} + O_{2(g)}$					
	$NO_{(g)}$	$O_{3(g)}$	$NO_{2(g)}$	$O_{2(g)}$		
ΔG° (kJ/mol)	87	163	52	0		
Pressure (atm)	1.00 x 10 ⁻⁶	2.00 x 10 ⁻⁶	1.00 x 10 ⁻⁷	1.00 x 10 ⁻³		

$$\Delta G_{rxn}^{\circ} = \left[\left(52 + 0 \right) - \left(87 + 163 \right) \right] \frac{kJ}{mol} = -198 \frac{kJ}{mol}$$

$$Q = \frac{P_{NO_2} P_{O_2}}{P_{NO} P_{O_3}} = \frac{\left(1.00 \times 10^{-7} \right) \left(1.00 \times 10^{-3} \right)}{\left(1.00 \times 10^{-6} \right) \left(2.00 \times 10^{-6} \right)} = 50.$$

$$\Delta G = \Delta G^{\circ} + RT \ln Q = -198 \frac{kJ}{mol} + 8.314 \frac{J}{mol \cdot K} \times \frac{kJ}{1000J} \times 298.15 K \ln 50.$$

$$\Delta G = -188 \frac{kJ}{mol}$$

- as I mentioned previously when eq is reached ΔG = 0 therefore,

$$0 = \Delta G^{\circ} + RT \ln K \rightarrow -\frac{\Delta G^{\circ}}{RT} = \ln K \rightarrow K = e^{-\Delta G^{\circ}/RT}$$

- we develop the following qualitative relationships based on the aforementioned mathematical one
 - -- when $\Delta G^{\circ}=0, \,$ then K = 1 and so all the gases are at 1 atm or 1 mol/L
 - -- when $\Delta G^{\circ} < 0$, then K > 1 and so $\Delta G^{\circ}_{
 m reactants} > \Delta G^{\circ}_{
 m products}$
 - -- when $\Delta G^{\circ} > 0$, then K < 1 and so $\Delta G^{\circ}_{
 m reactants} < \Delta G^{\circ}_{
 m products}$
- T & K

$$\ln K = -\frac{\Delta G^{\circ}}{RT} = -\frac{\Delta H^{\circ} - T\Delta S^{\circ}}{RT} = -\frac{\Delta H^{\circ}}{RT} + \frac{\Delta S^{\circ}}{R}$$

-- hence we could plot the eq constant at different T to determine ΔH° and ΔS° by using a linear relationship